
THERMAL RESONANCE IN A CLOSED CIRCULATION LOOP 

A. A. Repin UDC 536.24 

The results of an analytical investigation of transient heat transfer conditions in 
a closed circulation loop are given. They make it possible to determine the con- 
ditions of the resonance increase in the coolant temperature fluctuation amplitude 
as a function of the temperature variation frequency in the core and the hydrody- 
namic velocity of heat transfer along the loop. 

The flow of one or several coolants in power plants constitutes recirculation flow in a 
closed circulation loop. Such flow features the specific characteristics of the transient 
conditions of heat transfer, including vibrational characteristics. 

As is known, the heat transfer equations in themselves do not generate fluctuation 
processes. They develop in the presence of other phenomena -mechanical, electrical, optical, 
etc. - besides the heat transfer phenomena [I]. Mathematically, this means that the source 
of unsteadiness is to be found either in the supplementary equations or in the boundary con- 
ditions. Correspondingly, thermal fluctuations could be caused by changes in the thermal 
operating conditions in the core of the circulation loop, which are characterized by wide 
ranges of amplitudes and frequencies in, for instance, transport power plants. 

Investigation of such transient operating conditions is of great practical importance in 
striving to ensure reliable functioning of elements in the heat transfer loop. The reason 
for this is that fluctuations of the coolant temperature are unavoidably accompanied by 
pressure vibrations, which affect the strength characteristics of pipes and heat exchangers. 
The pressure amplitude in the flow of liquid coolants is especially significant. For in- 
stance, the pressure amplitude is roughly proportional to the fourth power of the tempera- 
ture amplitude (in degrees Celsius) in a water flow. Besides affecting the strength char- 
acteristics, transient pressure changes also influence the thermal efficiency of the loop. 
As was shown in [2], one of the causes of this is a more intensive evolution of the gaseous 
phase from the liquid flow. This reduces the effective cross section of the liquid phase 
of the flow, increases its velocity, and raises the hydraulic drag of the loop, and thus 
possibly reduces the circulation discharge of the coolant. 

The development of the pressure vibrations caused by temperature fluctuations are dif- 
ferent from the pressure changes due to self-oscillations in elements of the hydraulic sys- 
tems and the vibrational loads affecting the supply mains, mentioned, for instance, in [2], 
or the thermohydraulic self-oscillations occurring during the circulation of two-phase 
coolants [3]. Thus, it must be the subject of special investigations. 

As a first step, we shall consider below the problem of changes in the coolant tempera- 
ture with temperature fluctuations in the active section of the circulation loop. 

We assume that nonsteady heat supply is provided over the section xE(0, L~) in a circula- 
tion loop whose length is L. The temperature of the external coolants in the core is equal 
to Ta=T0+Aaexp(f~t), while the heat transfer coefficient is ka; heat is removed over the 
section x6(L2, L~) through aheat exchanger characterized by the heat transfer coefficient 
k h and a constant temperature of the receiving coolant. 

According to this model, the heat transfer in the loop is described by a system of 
adjoint equations, which are written in the well-known form (for instance, [4, 5]): 

in the core (0 < x < LI), 

aT1 8T1 fe~H 
- - - J r -  U -  - -  - -  ( T  a - - T 1 )  , 

Ot Ox 9c~, 
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Fig. i. Amplitude (a) and phase shift (b) of 
coolant temperature fluctuations as functions of 
the temperature fluctuation frequency in the core 
for s = As = 1/3 and b h = 0.5. i) b a = 0.i; 
2) 0.5; 3) 1.0; 4) 1.5; 5) 2.0. 

in the section of heat transfer from the core to the heat exchanger (L I < x < L2) 

OT2 OT2 + u - - = O ,  
Ot Ox 

in the heat exchanger (L2 < x < L3): 

OTs k,h,H (T h -- Ta) OT~ + u ~ ~- 

at Ox 0% 

in the section of heat transfer from the heat exchanger to the core (L 3 < x < L): 

OT~ _OT~ + u ~ = O .  
at ax 

The adjunction of the above equations requires that the equations TI(LI, t) = T2(LI, t), 
T2(L2, t) = Ts(L2, t), T3(L3t) = T4(L3, t), and T4(I, t) = TI(0, t), be satistied. The latter 
ensure the continuity of the temperature distribution along the loop. 

The system of equations can be replaced by a single equation with discontinuous coeffi- 
cients, which is written as follows in the dimensionless form: 
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Fig. 2. Resonance (a) and quasi-steady 
(b) amplitudes of coolant temperature 
fluctuations as functions of the heat 
transfer coefficient for s = As = 1/3. i) 
b h = 0.5; 2) 0.75; 3) 1.0; 4) 1.25; 5) 1.5; 
6) 1 . 7 5 ;  7) 2 . 0 .  

hT OT 
a (%) ~ + = b (~) [T O (~) -q- A (~) exp (ict,) T]. 

o~ (1) 

It is assumed here that the mass discharge of the coolant G = pfu is independent of 
the time and the coordinate. This would occur in the absence of coolant removal from the 
loop and a sufficiently steep pressure characteristic of the transfer pump, which would 
allow us to neglect the effect of loop pressure fluctuations on the circulation discharge. 

The Cauchy problem is usually considered for Eq. (i). For slow dynamic processes, where 
the characteristic time of variation of the input parameters is longer than the relaxation 
time, the problem can be simplified considerably by taking into account the effect of the 
manner in which the input parameters vary on the output parameters, using functions with a 
lagging argument [6~. However, this approach cannot be used for a closed loop, where the 
initial Cauchy conditions must be replaced with the equation T(0, t) = T(L, t). 

As far as we know, such a boundary-value problem has not been considered for first-order 
equations of the type (i). However, it has certain specific features; in particular, the 
function T(0, t) is not assigned, as in the Cauchy problem, but is uniquely determined from 
the condition T(0, t) = T(L, t). It is sometimes considered that such a problem is improper. 
However, this is not so, as far as one can judge from the solution given below; one of the 
characteristics of this solution is thermal resonance. 

The solution of Eq. (i) is sought in the following form: 

T=-T=(~)q-6(~)exp(i~) for  T(0,  T ) = - T ( 1 ,  T). (2) 
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The steady-state component in (2) satisfies the equation 

dT~ 

d~ 
- b (~) ITo (!) - -  T~ (~)l, 

(3)  

the solution of which is given by 

T~ (~) = exp (- -  13) [B + .i' b (~) r o (~) exp 13d~], 
0 

where 13 (~) = .!' b (~) ~,'! 
e q u a l  t o  o 

while the constant B, determined from the 

I 

B = J" b (~) T O (~) exp 13d~ [exp 13 (1) -- 1]-k 
0 

condition Ts(0 ) = Ts(1), is 

(4) 

(5) 

The amplitude of the transient component is determined 

d~ 
d~ 

- - .  + ~ [iaa (~) + b (~)1 = b (~) A (~) 

by solving the equation 

(6)  

and is found to be 

t~ ---- exp [--  (13 + i~ao) ] [C + S b (~) A (~) exp (13 + iaao) ~ l ,  
0 

(7) 

where ao = ] a (~) d~;',, 
0 

and 

Denoting 
0 

imaginary parts in %% = @r @ i~i, 

i ( 8 )  
C = I exp (13 + io~ao) b (~) A (~.) d~ [exp (13 (1) + iaa o (1)) - -  l ] -k  

b 

J1 (~) = .t" cos (aao) exp 13d~, and  & (~) ---- j' sin (aao) exp 13d~ and  s e p a r a t i n g  t h e  r e a l  and  t h e  

and C = C r + iC ~ we find 

t% = [Cr + J1 (~)l cos (~ao) exp ( - -  13) + [el + d2 (~-)1 sin (eao) exp ( - -  13), 

~i = [Ci + J~ (~)1 cos (eao) exp (--  13) - -  [Cr + d l  (~)1 sin (~ao) exp (--  13), 

Cr = J1 (1) [cos ~ao (1) exp 13 (1) - -  11 + d~ (1) sin eao (1) exp 13 (1),  
exp 213 (1) - -  2 exp 13 (1) cos aao (1) + 1 

C i = d2 (1) [cos gee (1) exp 13 (1) - -  11 - -  dl (1) sin eao (1) exp 13 (1) 
exp 2~ (1) - -  2 exp ~ (1) cos eta o (1) + 1 

(9) 
(io) 

( I i )  

(12) 

lows: 
In accordance with (4), (5), and (9)-(12), the solution of Eq. 

T = T~(~) + IOlexp[i(=x + ?--~a0)l, 

where the absolute value of the amplitude is equal to 

= l/O~ + O~ = exp [--  ~ (g)] -I/[C~ + J~ (~)l 2 + [C~ + J~(~)]z; 

the phase shift 
nected with the 
expression 

due to convective heat transfer is represented by ~a0; 
superposition of the waves propagating along the loop 

(I) is written as fol- 

(13) 

(14) 

the phase shift con- 
is determined by the 
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? = arctg {[C, + J2 (~) l /[Cr § J1 (~)]}- (15 )  

Us ing  t h e  g e n e r a l  e q u a t i o n s  ( 9 ) - ( 1 5 ) ,  we w r i t e  t h e  e x p r e s s i o n  f o r  [~1 and ~ s p e c i f i c a l l y  
for a contour with a constant transverse cross section (a = i), bearing in mind that the 
functions b(g), A(g), ~(g), and a0(g) are determined by the following relationships: 
0 < g < ZI, b = be, A = Aa, ~ = ba~, a0 = ~; s < ~ < s b = 0, A = 0, ~ = bee I, ~0 = ~; 

s < ~ < s b = bh, A = 0, $ = bas I + b h (~-s a0 = $; s < g < i, b = 0, A = 0, ~ = b a • 

By substituting these functions in the integrals J~($) and J~(g) and further in (14) 
and (15) with an allowance for (9)-(12), we obtain the following expressions for the relative 
amplitude and the phase shift at g = 0: 

[~l ba / = , /  exp (2ball)  - -  2 exp (be/0 cos (~11) q- 1 
m A a  Vo~ | /  e x p 2 ~ ( 1 ) - - 2 e x p ~ ( 1 ) c o s ~ §  ' (16 )  + OCZ 

Jx (1) exp ~ (1) sin ~ - -  &. (1) [exp ~ (1) cos ~ - -  I] 
t g ? =  J l ( 1 ) [ e x p ~ ( 1 ) c o s ~ - - i  l - ~ J 2 ( 1 ) e x p ~ ( 1 ) s i n ~  (17 )  

It is evident from (16) and (17) that the dependences of I%[ and u on ~ are not mono- 
tonic functions. For ~ = 2~n, the denominator in the radicant of (16) assumes a minimum 
value, and the amplitude correspondingly assumes the maximum value. The dependence of [%1 
on ~ is given in Fig. la, while y as a function of a is shown in Fig. lb. The sharp rise 
of [%1 at ~ = 2~ is noteworthy; there is also traced the second maximum at ~ = 4~, but it is 
roughly half as large as the first one. 

The above values of ~ can be termed the resonance points. Passing to the dimensional 
linear frequency v = m/2v and recalling the definition ~ = mL/U, we conclude that the condi- 
tion of resonance consists in the multiplicity of the frequency v of fluctuations in the 
heat flux supplied and of the frequency U/L of coolant circulation in the loop. This pheno- 
menon is similar to the resonance in forced vibrations of a mechanical system when its 
natural frequency coincides with the frequency of the perturbation force. 

The phase shift ~ depends basically on ~; at resonance values, ~ changes its sign 
abruptly and is not described by simple relaxation relationships with a lagging argument, 
as in [6]. 

Thus, we have established the nontrivial, resonance character of coolant temperature 
variation in a closed circulation loop with periodic changes of the thermal flux in the 
core. 

This phenomenon can be utilized for many practical purposes, in particular, measure- 
ments in heat engineering involving transient phenomena. Actually, direct measurement of 
the transient temperature, the thermal flux, or its fluctuation frequency in the heat 
generation zone often presents technical difficulties. However, there is now a possibility 
of determining these quantities in a simpler way on the basis of the derived relationships 
between 1%1 and y on the one hand, and ~ on the other. For this, it is sufficient to measure 
the temperatures and the circulation discharge of the coolant at accessible points of the 
loop. For this, we must know the reduced heat transfer coefficients b a and bh, since they 
affect materially the temperature amplitude. The character of this influence is evident 
from the curves in Fig. 2a, which indicate that the amplitude increases with b a and decreases 
with an increase in b h. Hence it follows, in particular, the important conclusion that the 
heat exchanger in the loop damps the thermal flux oscillations arising in the heat genera- 
tion zone, the more so, the higher the heat exchanger efficiency. To a certain extent, 
this is similar to the effect of friction forces in forced vibrations of mechanical systems. 

The values of b a and b h can be determined either by calculation or experimentally for 
actual power plants on the basis of temperature measurements under steady-state conditions 
(~I~ = 0, a = 0). 

Actually, in correspondence with (4) and (5), and assuming that T0($) = T a for 0 < g < 
s and T0(g) = T h for s < g < s we have 

1061 



T,  (0) = T h + (T a - -  Th, ) exp (ba/0 - -  1 
exp (bal, 4-b hA/)  - -  1 ' 

T ,  ( l l)  = T~ - -  [Ta - -  T ,  (0)1 exp ( - -  bflO. 

(18) 

(19) 

Transforming the expressions (18) and (19), we obtain 

bal  - -  T .  - -  L (o)  , 

T a -- T 8 (10 

b~hlal = tn [ Ta - -  T~ (l~) T~ (l~) - -  T~ (0) 

T a - -  T s (0) + r .  (0) - -  r h 

( 2 0 )  

_r.-> 1 
Ta - - T ~ ( 0 ) ]  " ( 2 1 )  

Thus, for determining b a and bh, it is sufficient to measure the temperatures Ta, Th, 
T(0), and T(s under steady-state conditions. Subsequently, the found values of b a and b h can 
be used for analyzing and measuring the transient processes on the basis of relationships 
(16) and (17). 

Let us now consider the relationship between the actual amplitudes of temperature fluc- 
tuations and the amplitudes determined by using the quasi-steady method (~/8~ = 0). Under 
quasi-steady conditions, the relative amplitude is determined by the expression 

~s T s (0) - -  T h exp (ball) - -  1 

A~ T~ - -  T h exp (bal ~ + bh ,Al  ) - -  1 ( 2 2 )  

(see Fig. 2b). 

The resonance amplitudes and the phase shift y in the case of full resonance, which 
occurs when cos ~ = 1 and cos ~s = -i, i.e., s = 1/2 for ~ = 27, are described by the ex- 
pressions 

l~'[ ba exp (ba/2) -k 1 

A ,  g-b~ 4- 4a  z exp (ba/2 4- bh!k/ )  - -  1 ' 

? ---- - -  a r c tg  (2a/ba). 

( 2 3 )  

(2~) 

Comparing (22) and (23), we obtain the expression 

le] ba 
_ _  c th  (b,~/2), (25) 

from which follows that I%1 < %s always. Thus, for actual transient processes, estimates 
based on quasi-steady conditions cannot be used. 

All these specific features, found for ~ = O, occur also at any point of the loop (~ # 0). 
Under full resonance conditions, the numerical values of IOl/Aa are independent of g and 
are determined by expression (23). The difference consists only in the value of the phase 
shift in (13) because of the different values of a0(g). 

These cases of resonance considered above also occur when the fluctuation mode of the 
thermal flux is different from that used in Eq. (i). In particular, temperature fluctua- 
tions with an infinite amplitude arise if the thermal flux in the core (0 < ~ < s is in- 
dependent of the coolant temperature. Actually, the heat transfer equation is in this case 
written thus: 

OT OT _ b (~) [T o (~) + A (~) exp (i~z'0]. ( l a )  
a (~) ~ + 0~ 
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The solution for the transient component in (la) can be obtained from (7) for g = 0; 
as a result, in correspondence with (16), the amplitude is infinite at the resonance points. 

The solutions obtained can also be used for analyzing the relaxation processes. The 
importance of this analysis is related to the fact that, in practical work, the state of the 
core is usually estimated with respect to the thermal state of the coolant in the loop (0 < 

< s by utilizing, for instance, expression (18) and (19) for steady-state conditions. 
However, this cannot be done for transient processes because of the different rates of tem- 
perature variation in the coolant and the core. Acceptable coolant temperatures still do 
not indicate a permissible thermal state of the core. 

Assuming that ~ = -i~0, in (i), where ~0 is the real value, we have an exponential 
temperature rise in the core: T a = T o + A aexp(~0T). In this case, the coolant temperature 
also increases exponentially; in correspondence with (7) and (8), we obtain the following 
expression for the preexponential factor at $ = 0: 

exp [(b~ 4- %) ll1 - -  1 

Aa ba -I- So exp [ball 4- blhAl 4- %1 - -  1" ( 2 6 )  

It follows from (26) that, for large values of s 0 corresponding to a high rate of in- 
crease in Ta, the values of 8(0) are much smaller than A a. This indicates that, at the in- 
itial instants of time, the coolant reacts slightly to changes in T a. Therefore, in transient 
heating, the variation of T = ~ exp(~0~) must be monitored carefully with stepped-up accuracy 
on the basis of expression (26) in order to predict critical conditions in the core. 

Subsequently, the expressions derived for transient temperature variation can be used 
in the hydrodynamic equations for the circulation loop in order to determine the coolant 
pressure as a function of the temperature and, thus, the state of mechanical strength of 
the mains and the heat exchangers. 

NOTATION 

T, temperature; A a and 8, temperature variation amplitudes; x and ~ = x/L, dimensional 
and dimensionless coordinates along a circulation loop whose length is L, respectively; t 
and T = tU/L, dimensional and dimensionless time, respectively; U, characteristic flow 
velocity in the circulation loop; m, temperature variation frequency; ~ = mL/U; a($) = f($)/L, 
dimensionless cross-sectional area of the loop; F, characteristic area; k, heat transfer 
coefficient; b = kNL/Cppfu, reduced heat transfer coefficient; u, local velocity of the 
coolant; N, segment of-the channel perimeter through which heat transfer occurs; p and Cp; 
density and specific heat of the coolant, respectively; G = pfu, circulation discharge of 

a0(~)=fa($)d$, and ~(~)=fb(~)d~ , reduced coefficients; Jz(~) and J2(~), auxiliary functions; 
0 0 

y, phase shift; C r and Ci, integration constants; 41, length of the loop segment comprising 
the heat-supplying core; A~ = 4 s - ~2, length of the loop segment where heat is removed. 
Subscripts: a and h pertain to the temperature and the heat transfer coefficient in the core 
and in the segment of heat removal, respectively; s: steady-state conditions; r and i: real 
and imaginary parts, respectively. 
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